

SYDNEY BOYS' HIGH SCHOOL

MOORE PARK, SURRY HILLS

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

MATHEMATICS

Year 12 3/4 Unit

Time allowed Two hours. (plus 5 minutes reading time)

Examiners: T.A.Donnellan, B.J.Genner.

Directions to Candidates

- All question may be attempted
- All questions are of equal value.
- All necessary working should be shown in every question.
- Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.
- Start each question on a new page, clearly showing your name and class.
- If required, addition paper may be obtained upon request.
- This is a trial paper only and does not necessarily reflect the content or the format of the final Higher School Certificate Paper for this subject.

QUESTION 1. (Start a new writing booklet)

Marks

(a) Differentiate $\sin^{-1} 2x$ with respect to x.

[1]

(b) Find $\tan^{-1}(-1)$.

- [1]
- (c) Find the acute angle between the lines 5x y 9 = 0 and 2x 3y + 12 = 0
- [1]

(d) Evaluate $\lim_{x \to 0} \frac{\sin 4x}{7x}$

- [2]
- (e) If α , β and γ are roots of the equation $x^3 + x^2 3 = 0$, write down the value of
- [4]

- i) $\alpha + \beta + \gamma$
- ii) $\alpha\beta + \beta\gamma + \alpha\gamma$
- iii) $\alpha^2 + \beta^2 + \gamma^2$
- (f) Evaluate $\int_0^{\pi/3} \cos^2 x \, dx$

[3]

QUESTION 2. (Start a new writing booklet)

(a) Given $f(x) = \frac{1}{3}\cos^{-1} 2x$;

[4]

- i) write down the domain.
- ii) write down the range, and hence
- iii) sketch y = f(x)
- (b) Divide the interval AB externally in the ratio 2:3, where A is the point (3,1) and B is (-1,4).
- [2]

[4]

(c) Find

i)
$$\int \frac{dx}{1+4x^2}$$

- ii) $\int x\sqrt{2-x} \ dx \quad \text{using } u = 2-x$
- (d) Given that $\log_4 9 = 1.585$ (to 3 decimal places), find $\log_4 144$.

[2]

QUESTION 3. (Start a new writing booklet)

Marks

- (a) Find the term independent of x in the expansion of $\left(x \frac{2}{x^2}\right)^9$. [3]
- (b) Show that the graph $y = x^3 + 3x^2 + 4x$ cuts the x-axis only once. [2]
- (c) Prove $\cos^4 x + \sin^2 x \equiv \cos^2 x + \sin^4 x$ [3]
- (d) Use the method of mathematical induction to prove that $4 \times 6^n + 1$ is a multiple of 5 when n is a positive integer. [4]

QUESTION 4. (Start a new writing booklet)

- (a) i) Express $\sqrt{3} \sin 3t \cos 3t$ in the form $R \sin(3t \alpha)$ where α is acute and. R > 0 [3]
 - ii) Hence or otherwise find in exact form the general solution of the equation $\sqrt{3}\sin 3t \cos 3t = 0$
- (b) $P(2ap, ap^2)$ and $Q(2aq, aq^2)$ are two points on the parabola $x^2 = 4ay$. The tangent at P and a line through Q parallel to the y-axis meet at point R. The tangent at Q and the line through P parallel to the y-axis meet at S.
 - i) Draw a neat diagram showing all information given above.
 - ii) Prove the gradient at P is p and the equation of the tangent is $y = px ap^2$.
 - iii) Show that PQRS is a parallelogram.
 - iv) Show that the area of this parallelogram is $2a^2|p-q|^3$ square units.

QUESTION 5. (Start a new writing booklet)

Marks

(a) A particle is moving on a straight line in such a way that its displacement x metres from the origin at time t seconds is given by

$$x = 5\sin 2t$$

- i) Show that $\frac{d^2x}{dt^2} = -4x$
- ii) Find the maximum speed of the particle.
- iii) Find the maximum acceleration of the particle.
- iv) What will be the acceleration of the particle when its displacement is 0?

(b)

AB is the diameter of the circle ABC whose centre is O. C is equidistant from A and B and the arc AB is drawn with C as the centre. Show that the shaded area is equal to the area of the triangle ABC

[5]

[3]

(c) Let T be the temperature of an object at time t and let D be the temperature of the surrounding medium. Newton's Law of Cooling states that the rate of change of T is proportional to (T - D)

i.e.
$$\frac{dT}{dt} = -k(T - D)$$

- i) Show that $T = D + Ce^{-kt}$ (where C and k are constants) satisfies Newton's Law of Cooling.
- ii) A packet of meat with an initial temperature of 25°C is placed in a freezer whose temperature is kept at a constant -10°C. It takes 12 minutes for the temperature of the meat to drop to 15°C. How much additional time is needed for the temperature of the meat to fall to 0°C? Give you answer in minutes, correct to 1 decimal place.

Question 6. (Start a new writing booklet)

Marks

- (a) 6 white and 2 red marbles are arranged at random in a straight line. Find the probability that
- [4]

- i) The red marbles are at the ends of the line.
- ii) The red marbles are separated by at least 3 white marbles.
- (b) Kim wishes to solve $x^4 110 = 0$ correct to 2 decimal places and guesses that the solution is close to 3.2. Use Newton's method once to refine Kim's result, and demonstrate that to use it a second time does not improve the result to two decimal places.
- (c) A transmitter tower TB is 150 metres tall and is observed from Q (due South of B) with an angle of elevation of 15° and from P (due West of B) with an angle of elevation of 17°.
 - i) Find the distance PQ.
 - ii) Hence or otherwise find ∠PTQ to the nearest minute

(a)

PQ and SR are tangents to both circles. Show that;

- i) PQ = SR.
- ii) PQRS is a Trapezium.
- iii) P, Q, R and S are concyclic
- iv) $\angle PAS + \angle QBR = 180^{\circ}$
- (b) Two guns at the same fortification shoot simultaneously and hit the same target at different times. They have the same muzzle velocity of 150ms^{-1} but different angles of elevation. One gun has an angle of elevation of 30° . (Assume $g = 10 \text{ ms}^{-2}$)
- i) Find the distance of the target from the guns.
- ii) Find the angle of elevation of the other gun.
- iii) Find the time which elapses between the fall of the two shots to the nearest $\frac{1}{10}$ s.

END OF PAPER

1999

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics Extension 1

Sample Solutions

(1) (a)
$$d\left(\frac{\sin^2 2x}{dx}\right) = \frac{2}{\sqrt{1-4x^2}}$$

(b)
$$\tan^{-1}(-1) = -\tan^{-1}1$$

= $-\pi 14$

(c)
$$5x-y-9=0$$
 $2x-3y+12=0$
 $y=5x-9$ $3y=2x+12$
 $m_1=5$ $m_2=\frac{2}{3}$

$$tand = \left| \frac{m_1 - M_2}{1 + m_1 M_2} \right|$$

$$= \left| \frac{5 - 2/3}{1 + 5 \times \frac{2}{3}} \right|$$

$$= 1$$

$$0 = 45^{\circ}$$

(d)
$$sinx = x$$
, x small
 $sin4x = lim \frac{4x}{x \rightarrow 0}$
 $sin4x = lim \frac{4x}{x \rightarrow 0}$

$$= \frac{4}{7}$$

(e)
$$x^3 + x^2 - 3 = 0$$

(i) $x^3 + x^2 - 3 = 0$
(ii) $x^3 + x^2 - 3 = 0$

(iii)
$$\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha \beta + \alpha \gamma + \beta \gamma)$$

= 1 - 2×0
= 1

$$(f) \int_{0}^{\pi/3} \cos^{2}x \, dx = \frac{1}{2} \int_{0}^{\pi/3} 2\cos^{2}x \, dx$$

$$= \frac{1}{2} \int_{0}^{\pi/3} (1 + \cos 2x) \, dx$$

$$= \frac{1}{2} \left[x + \frac{1}{2} \sin 2x \right]_{0}^{\pi/3}$$

$$= \frac{1}{2} \left[\pi/_{3} + \frac{1}{2} \sin 2\pi \right]_{0}^{\pi/3}$$

$$= \frac{\pi}{6} + \frac{1}{4} \times \frac{\sqrt{3}}{2}$$

$$= \pi/_{6} + \frac{\sqrt{3}}{8}$$

(2) (b)
$$A(3,1)$$
 $B(-1,4)$ $-2:3$

$$P(\frac{mx_1 + nx_1}{m+n}, \frac{my_2 + ny_1}{m+n})$$

$$= (\frac{2+9}{1}, -8+3)$$

$$= (11, -5)$$

(c) (i)
$$\int \frac{dx}{1+4x^{2}}$$

$$= \frac{1}{4} \int \frac{dx}{\frac{1}{4}+x^{2}}$$

$$= \frac{1}{4} \times 2 + an^{-1}(2x) + C$$

$$= \frac{1}{2} + an^{-1}(2x) + C$$

(a)
$$\log_4 q = 1.585$$

 $\log_4 144 = \log_4 (9 \times 16)$
 $= \log_4 9 + \log_4 16$
 $= 1.585 + 2\log_4 4$
 $= 1.585 + 2$
 $= 3.585$

$$(cnstant term = {9 \choose k} (-2)^k n$$

$$(cnstant term = {9 \choose 3} (-2)^3$$

$$= -672$$

```
(3) (C) LHS = ros4x + sin2x
            = (1-510^2 x)^2 + 510^2 x [ ^{\circ} (05^2 x = 1-510^2 x)]
            = sin4x -2sin2x+1+sin2x
           = 51441C +1 -51427L
            = SIN4X + (052X
(d) 4 \times 6^n + 1 = 5M, N70 (where Mir an in Feger)
             LHS = 4 \times 6 + 1 = 25
                            =5×5
                      so the statement is true for n=1
  Assume the statement is true for some integer n=k
           1.e. 4×6 k+1 = 5P (Pan integer)
  we need to prove the statement true when n=k+1
           1e. 4×6 k+1 +1 = 50 (d an integer)
    LHS = 4x6 k+1+1
         = 4x6.6 + 1
         = 4 \times 6.6^{R} + 1
          = 6(4x6R+1) -6+1
          = 6 (5P) -5
          = 5 (617-1)
                        [dir an integer, since Pir an integer]
          = 5 Q
           = RHS
   so when the statement is true for n=k, it is true
   for n=k+1
   so by the principle of mathematical induction 4x6"+1=5M, for
  N>0
```

(4) (a) (i)
$$\sqrt{3} \sin 3t - \cos 3t = R \sin (3t - \alpha)$$

= R sin3t (05\alpha - R sind (053t)

$$R \cos \alpha = \sqrt{3} - 0 \Rightarrow R = 2$$

$$R \sin \alpha = 1 - 0$$

$$+ \cos \alpha = \frac{1}{\sqrt{3}}$$

$$\alpha = \pi/6$$

(ii) "otherwise" is better approach as
$$\sqrt{3} \sin 3t = \cos 3t$$

$$\tan 3t = \frac{1}{\sqrt{3}}$$

$$3t = n\pi + \pi/6$$

$$\left[t = \frac{n\pi}{3} + \pi/18 \right]$$

(iii) R:
$$x = 2aq$$

 $y = px - ap^2$

$$y = px - \alpha p$$

$$y = 2\alpha pq - \alpha p^{2}$$

$$\therefore QR = |\alpha q^{2} - 2\alpha pq + \alpha p^{2}| = |\alpha|(p-q)^{2}$$

$$\therefore x = 2\alpha p$$

$$y = qx - \alpha q^{2} \Rightarrow y = 2\alpha pq - \alpha q^{2}$$

 $ps = |ap^2 - 2apq + aq^2| = |a|(p-q)^2$

(ii)
$$P(2ap, ap^2)$$

 $x^2 = 4ay$
 $\therefore 2x = 4a dy$
 dx
 $P: 2(2ap) = 4a dy$
 dx
 $\therefore dy = P$
 $y - ap^2 = P(x - 1ap)$

RQII SP and RQ = SP => PQRS is a pavallelogram.

(iv) Area =
$$|ap^2 - 2apq + aq^2| \times |2a(p-q)|$$

= $2a^2|p^2 - 2pq + q^2| \times |p-q|$
= $2a^2|(p-q)^2| \times |p-q|$
= $2a^2|p-q|^3$

$$3 = -20 \sin 2t$$

$$= -4(5 \sin 2t)$$

(ii)
$$\dot{x} = 10 \cos 2t$$
 (iii) $\dot{x} = -20 \sin 2t$

(iii)
$$\ddot{x} = -10 \text{ s.M.t.}$$

wax $a(t = 20 \text{ m/s}^2)$

$$\max |x| = 10 \text{ m/s}$$
 $\max \text{ acc} = 20 \text{ m/s}^2$

(b)

$$\triangle ABC = \frac{1}{2} (\sqrt{2}r)^2$$

Semi-circle =
$$\frac{1}{2}\pi r^2$$

... shaded area = $\frac{1}{2}\pi r^2 - \left(r^2(\frac{\pi}{2}-1)\right)$
= r^2
Q.E.D.

(5) (c) (i)
$$T = D + Ce^{-Rt}$$
 $L+S$ $\frac{dT}{dt} = -R \times Ce^{-kt}$
 $= -R(T-D)$
 $= R+S$
 $Q = D$.

(ii) $D = -10$ $t = 0$, $T = 25$
 $t = 12$, $T = 15$
 $T = -10 + Ce^{-kt}$
 $T = -10 + 35e^{-kt} = 35e^{-kt} - 10$

35 $e^{-12k} = 25$
 $e^{-12k} = 5/7$
 $\therefore -12k = \ln(5/7)$
 $R = \frac{1}{12}\ln(7/5)$
 $T = 0$

35 $e^{-kt} - 10 = 0$
 $e^{-kt} = \frac{10}{35} = \frac{27}{7}$
 $-kt = \ln(2/7)$
 $t = \frac{1}{8}\ln(7/2) = 44.7$

: An additional 32.7 minutes

(6) (a) 6w, 2R

Total arrangements =
$$\frac{8!}{6!2!} = (\frac{8}{2}) = 28$$

(i)
$$@ \times \times \times \times \times \times @$$

$$P(Red : at end) = \frac{1}{28}$$

Total = 18 ways
$$P(A+ least 3 separated) = 1 - \frac{18}{28} = \frac{10}{28} = \frac{5}{14}$$

(b)
$$f(\pi) = \chi^4 - 110$$
, $f'(\chi) = 4\chi^3$, $\chi_0 = 3 \cdot 2$
 $f(3 \cdot 2) = -5 \cdot 1424$
 $\chi_1 = \chi_0 - \frac{f(\chi_0)}{f'(\chi_0)} = 3 \cdot 2 - \frac{3 \cdot 2^4 - 110}{4(3 \cdot 2)^3}$
 $= 3 \cdot 239233398 = 3 \cdot 24$

$$f(x_1) = 0.953474$$

$$x_2 = x_1^2 - \frac{f(x_1)}{f'(x_1)} = 3.238532068 = 3.24$$

$$fan17° = 150$$

(i)
$$PQ^{2} = 3C^{2} + y^{2}$$

= $150^{2} (\tan^{2} 73^{\circ} + \tan^{2} 75^{\circ})$
 $PQ = 150 \sqrt{\tan^{2} 73^{\circ} + \tan^{2} 75^{\circ}}$

(ii)
$$PT = \frac{150}{\sin 17^{\circ}}$$
, $TQ = \frac{150}{\sin 15^{\circ}}$
(os $\angle PTQ = PT^{2} + TQ^{2}$

$$(a)$$
 (i) $PQ = PT - QT = ST - RT = SR$ (tangenty from a point)

(ii) $\triangle TQR & \triangle TPS$ are isosceler

"" $\angle T$ is common \Rightarrow $\angle QRT = \angle PST$ (base angles of isosceles \triangle 's with

common vertex are equal)

: PS II QR

: PSRQ ù a trapezium

(iii)
$$\angle QRT = \angle PSR$$
 (parallel)
= $\angle SPR$ (1505. \triangle)

: exterior angle = opposite interior angle

.. PSRQ is a cyclic quad (converse of exterior angle theorem of cyclic quadr)

(iv) let
$$LPAS = X \Rightarrow LPSR = X$$
 (alternate seg. the crem)
 $\Rightarrow LPQR = 180 - X$ (opp. angles of cyclic quad)
 $\Rightarrow LPAS + LQBR = 180^{\circ}$

7(b) Assume the target is on the ground (u-y=0) at same horizontal height as cannons.

[Too many variables otherwise]

Formulae quoted without proof:

(ii) 0 = 60 is the other angle.

thin T =
$$\frac{2\sqrt{\sin \theta}}{9}$$

think elapse = $\frac{2\sqrt{\sin 60} - \sin 30}{9}$
= $\frac{2\times150}{10}\left(\frac{\sqrt{3}}{2} - \frac{1}{2}\right)$
= $15\left(\sqrt{3} - 1\right)$
= $11 - 0$ secondifference